15 research outputs found

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Influence of mixing methods of nano silica on the microstructural and mechanical properties of flax fabric reinforced geopolymer composites

    No full text
    © 2016 Elsevier LtdThis paper presents the effects of two mixing methods of nanosilica on physical and mechanical properties of flyash-based geopolymer matrices containing nanosilica (NS) at 0.5, 1.0, 2.0, and 3.0 wt%. Comparison is made with conventional mechanical dry-mix of NS with fly-ash and wet-mix of NS in alkaline solutions. The influence of NS on the flexural toughness of flax fabric (FF) reinforced geopolymer nanocomposites has also been reported. Physical and microstructural properties are investigated using X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. Results show that generally the addition of NS particles improves the microstructure and increases flexural and compressive strengths of geopolymer nanocomposites. However, samples prepared using the dry-mix approach demonstrate better physical and mechanical properties when compared to wet-mix samples

    Effect of nano-clay on mechanical and thermal properties of geopolymer

    Get PDF
    The effect of nano-clay platelets (Cloisite 30B) on the mechanical and thermal properties of fly ash geopolymer has been investigated in this paper. The nano-clay platelets are added to reinforce the geopolymer at loadings of 1.0%, 2.0%, and 3.0% by weight. The phase composition and microstructure of geopolymer nano-composites are also investigated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) techniques. Results show that the mechanical properties of geopolymer nano-composites are improved due to addition of nano-clay. It is found that the addition of 2.0 wt% nano-clay decreases the porosity and increases the nano-composite's resistance to water absorption significantly. The optimum 2.0 wt% nano-clay addition exhibited the highest flexural and compressive strengths, flexural modulus and hardness. The microstructural analysis results indicate that the nano-clay behaves not only as a filler to improve the microstructure, but also as an activator to facilitate the geopolymeric reaction. The geopolymer nano-composite also exhibited better thermal stability than its counterpart pure geopolymer

    Effect of nanoclay on durability and mechanical properties of flax fabric reinforced geopolymer composites

    Get PDF
    The main concern of using natural fibres as reinforcement in geopolymer composites is the durability of the fibres. Geopolymers are alkaline in nature because of the alkaline solution that is required for activating the geopolymer reaction. The alkalinity of the matrix, however, is the key reason of the degradation of natural fibres. The purpose of this study is to determine the effect of nanoclay (NC) loading on the mechanical properties and durability of flax fabric (FF) reinforced geopolymer composites. The durability of composites after 4 and 32 weeks at ambient temperature is presented. The microstructure of geopolymer matrices was investigated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results showed that the incorporation of NC has a positive impact on the physical properties, mechanical performance, and durability of FF reinforced geopolymer composites. The presence of NC has a positive impact through accelerating the geopolymerization, reducing the alkalinity of the system and increasing the geopolymer gel. © 2017 The Ceramic Society of Japan and the Korean Ceramic Society

    Metallothioneins in Drug Resistance

    No full text
    corecore